If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-6m-89=0
a = 1; b = -6; c = -89;
Δ = b2-4ac
Δ = -62-4·1·(-89)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-14\sqrt{2}}{2*1}=\frac{6-14\sqrt{2}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+14\sqrt{2}}{2*1}=\frac{6+14\sqrt{2}}{2} $
| m^2-6m-89=0 | | m^2-6m-89=0 | | 2x+10+4x=-25-x | | y(-7)=-21 | | p(-4)=28 | | p(-4)=28 | | p(-4)=28 | | 3x-10=2(x+3)+6 | | -16x-32+12=-54 | | -13x+24+7x=2(-13x+12) | | -13x+24+7x=2(-13x+12 | | 17+8n|=-10 | | x^2-0.8x=0.26 | | 0.25z-1=6 | | 1/2(10-12)=3x+22 | | X-249/2=9x-5 | | X-249/2=9x-5 | | -4m-6=7m-6 | | -4m-6=7m-6 | | -4m-6=7m-6 | | -4m-6=7m-6 | | -4m-6=7m-6 | | -4m-6=7m-6 | | -4m-6=7m-6 | | 2n^2*7=-4n+5 | | 2n^2*7=-4n+5 | | 2n^2*7=-4n+5 | | 2n^2*7=-4n+5 | | -4m-6=7m-6 | | 2n^2*7=-4n+5 | | -4m-6=7m-6 | | -4m-6=7m-6 |